\(\int \frac {(7+5 x)^3}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx\) [61]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 165 \[ \int \frac {(7+5 x)^3}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=-\frac {2135}{108} \sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}-\frac {5}{12} \sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x} (7+5 x)-\frac {487585 \sqrt {11} \sqrt {-5+2 x} E\left (\arcsin \left (\frac {2 \sqrt {2-3 x}}{\sqrt {11}}\right )|-\frac {1}{2}\right )}{1296 \sqrt {5-2 x}}+\frac {2474201 \sqrt {5-2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{11}} \sqrt {1+4 x}\right ),\frac {1}{3}\right )}{216 \sqrt {66} \sqrt {-5+2 x}} \]

[Out]

2474201/14256*EllipticF(1/11*33^(1/2)*(1+4*x)^(1/2),1/3*3^(1/2))*66^(1/2)*(5-2*x)^(1/2)/(-5+2*x)^(1/2)-487585/
1296*EllipticE(2/11*(2-3*x)^(1/2)*11^(1/2),1/2*I*2^(1/2))*11^(1/2)*(-5+2*x)^(1/2)/(5-2*x)^(1/2)-2135/108*(2-3*
x)^(1/2)*(-5+2*x)^(1/2)*(1+4*x)^(1/2)-5/12*(7+5*x)*(2-3*x)^(1/2)*(-5+2*x)^(1/2)*(1+4*x)^(1/2)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {173, 1629, 164, 115, 114, 122, 120} \[ \int \frac {(7+5 x)^3}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\frac {2474201 \sqrt {5-2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{11}} \sqrt {4 x+1}\right ),\frac {1}{3}\right )}{216 \sqrt {66} \sqrt {2 x-5}}-\frac {487585 \sqrt {11} \sqrt {2 x-5} E\left (\arcsin \left (\frac {2 \sqrt {2-3 x}}{\sqrt {11}}\right )|-\frac {1}{2}\right )}{1296 \sqrt {5-2 x}}-\frac {5}{12} \sqrt {2-3 x} \sqrt {2 x-5} \sqrt {4 x+1} (5 x+7)-\frac {2135}{108} \sqrt {2-3 x} \sqrt {2 x-5} \sqrt {4 x+1} \]

[In]

Int[(7 + 5*x)^3/(Sqrt[2 - 3*x]*Sqrt[-5 + 2*x]*Sqrt[1 + 4*x]),x]

[Out]

(-2135*Sqrt[2 - 3*x]*Sqrt[-5 + 2*x]*Sqrt[1 + 4*x])/108 - (5*Sqrt[2 - 3*x]*Sqrt[-5 + 2*x]*Sqrt[1 + 4*x]*(7 + 5*
x))/12 - (487585*Sqrt[11]*Sqrt[-5 + 2*x]*EllipticE[ArcSin[(2*Sqrt[2 - 3*x])/Sqrt[11]], -1/2])/(1296*Sqrt[5 - 2
*x]) + (2474201*Sqrt[5 - 2*x]*EllipticF[ArcSin[Sqrt[3/11]*Sqrt[1 + 4*x]], 1/3])/(216*Sqrt[66]*Sqrt[-5 + 2*x])

Rule 114

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2/b)*Rt[-(b
*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /;
 FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-(b*c - a*d)/d, 0] &&
  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])

Rule 115

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[Sqrt[e + f*x
]*(Sqrt[b*((c + d*x)/(b*c - a*d))]/(Sqrt[c + d*x]*Sqrt[b*((e + f*x)/(b*e - a*f))])), Int[Sqrt[b*(e/(b*e - a*f)
) + b*f*(x/(b*e - a*f))]/(Sqrt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))]), x], x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !(GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0]) &&  !LtQ[-(b*c - a*d)/d, 0]

Rule 120

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[2*(Rt[-b/d,
 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)
/(d*(b*e - a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] && Po
sQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a
+ b*x] && GtQ[((-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[((-d)*e + c*f)/f,
0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f/b]))

Rule 122

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[Sqrt[b*((c
+ d*x)/(b*c - a*d))]/Sqrt[c + d*x], Int[1/(Sqrt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))]*Sqrt[e
+ f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !GtQ[(b*c - a*d)/b, 0] && SimplerQ[a + b*x, c + d*x] && Si
mplerQ[a + b*x, e + f*x]

Rule 164

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rule 173

Int[((a_.) + (b_.)*(x_))^(m_)/(Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_
Symbol] :> Simp[2*b^2*(a + b*x)^(m - 2)*Sqrt[c + d*x]*Sqrt[e + f*x]*(Sqrt[g + h*x]/(d*f*h*(2*m - 1))), x] - Di
st[1/(d*f*h*(2*m - 1)), Int[((a + b*x)^(m - 3)/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]))*Simp[a*b^2*(d*e*g
+ c*f*g + c*e*h) + 2*b^3*c*e*g*(m - 2) - a^3*d*f*h*(2*m - 1) + b*(2*a*b*(d*f*g + d*e*h + c*f*h) + b^2*(2*m - 3
)*(d*e*g + c*f*g + c*e*h) - 3*a^2*d*f*h*(2*m - 1))*x - 2*b^2*(m - 1)*(3*a*d*f*h - b*(d*f*g + d*e*h + c*f*h))*x
^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && IntegerQ[2*m] && GeQ[m, 2]

Rule 1629

Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> With[
{q = Expon[Px, x], k = Coeff[Px, x, Expon[Px, x]]}, Simp[k*(a + b*x)^(m + q - 1)*(c + d*x)^(n + 1)*((e + f*x)^
(p + 1)/(d*f*b^(q - 1)*(m + n + p + q + 1))), x] + Dist[1/(d*f*b^q*(m + n + p + q + 1)), Int[(a + b*x)^m*(c +
d*x)^n*(e + f*x)^p*ExpandToSum[d*f*b^q*(m + n + p + q + 1)*Px - d*f*k*(m + n + p + q + 1)*(a + b*x)^q + k*(a +
 b*x)^(q - 2)*(a^2*d*f*(m + n + p + q + 1) - b*(b*c*e*(m + q - 1) + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*
(2*(m + q) + n + p) - b*(d*e*(m + q + n) + c*f*(m + q + p)))*x), x], x], x] /; NeQ[m + n + p + q + 1, 0]] /; F
reeQ[{a, b, c, d, e, f, m, n, p}, x] && PolyQ[Px, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {5}{12} \sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x} (7+5 x)+\frac {1}{120} \int \frac {34985+104825 x+85400 x^2}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx \\ & = -\frac {2135}{108} \sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}-\frac {5}{12} \sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x} (7+5 x)+\frac {\int \frac {1088280+29255100 x}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx}{12960} \\ & = -\frac {2135}{108} \sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}-\frac {5}{12} \sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x} (7+5 x)+\frac {487585}{432} \int \frac {\sqrt {-5+2 x}}{\sqrt {2-3 x} \sqrt {1+4 x}} \, dx+\frac {2474201}{432} \int \frac {1}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx \\ & = -\frac {2135}{108} \sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}-\frac {5}{12} \sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x} (7+5 x)+\frac {\left (2474201 \sqrt {5-2 x}\right ) \int \frac {1}{\sqrt {2-3 x} \sqrt {\frac {10}{11}-\frac {4 x}{11}} \sqrt {1+4 x}} \, dx}{216 \sqrt {22} \sqrt {-5+2 x}}+\frac {\left (487585 \sqrt {-5+2 x}\right ) \int \frac {\sqrt {\frac {15}{11}-\frac {6 x}{11}}}{\sqrt {2-3 x} \sqrt {\frac {3}{11}+\frac {12 x}{11}}} \, dx}{432 \sqrt {5-2 x}} \\ & = -\frac {2135}{108} \sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}-\frac {5}{12} \sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x} (7+5 x)-\frac {487585 \sqrt {11} \sqrt {-5+2 x} E\left (\sin ^{-1}\left (\frac {2 \sqrt {2-3 x}}{\sqrt {11}}\right )|-\frac {1}{2}\right )}{1296 \sqrt {5-2 x}}+\frac {2474201 \sqrt {5-2 x} F\left (\sin ^{-1}\left (\sqrt {\frac {3}{11}} \sqrt {1+4 x}\right )|\frac {1}{3}\right )}{216 \sqrt {66} \sqrt {-5+2 x}} \\ \end{align*}

Mathematica [A] (verified)

Time = 18.64 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.73 \[ \int \frac {(7+5 x)^3}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\frac {-6600 \sqrt {2-3 x} \sqrt {1+4 x} \left (-490+151 x+18 x^2\right )-5363435 \sqrt {66} \sqrt {5-2 x} E\left (\arcsin \left (\sqrt {\frac {3}{11}} \sqrt {1+4 x}\right )|\frac {1}{3}\right )+4948402 \sqrt {66} \sqrt {5-2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{11}} \sqrt {1+4 x}\right ),\frac {1}{3}\right )}{28512 \sqrt {-5+2 x}} \]

[In]

Integrate[(7 + 5*x)^3/(Sqrt[2 - 3*x]*Sqrt[-5 + 2*x]*Sqrt[1 + 4*x]),x]

[Out]

(-6600*Sqrt[2 - 3*x]*Sqrt[1 + 4*x]*(-490 + 151*x + 18*x^2) - 5363435*Sqrt[66]*Sqrt[5 - 2*x]*EllipticE[ArcSin[S
qrt[3/11]*Sqrt[1 + 4*x]], 1/3] + 4948402*Sqrt[66]*Sqrt[5 - 2*x]*EllipticF[ArcSin[Sqrt[3/11]*Sqrt[1 + 4*x]], 1/
3])/(28512*Sqrt[-5 + 2*x])

Maple [A] (verified)

Time = 1.61 (sec) , antiderivative size = 139, normalized size of antiderivative = 0.84

method result size
default \(-\frac {\sqrt {2-3 x}\, \sqrt {-5+2 x}\, \sqrt {1+4 x}\, \left (4118336 \sqrt {1+4 x}\, \sqrt {2-3 x}\, \sqrt {22}\, \sqrt {5-2 x}\, F\left (\frac {\sqrt {11+44 x}}{11}, \sqrt {3}\right )-5363435 \sqrt {1+4 x}\, \sqrt {2-3 x}\, \sqrt {22}\, \sqrt {5-2 x}\, E\left (\frac {\sqrt {11+44 x}}{11}, \sqrt {3}\right )+1425600 x^{4}+11365200 x^{3}-44028600 x^{2}+14176800 x +6468000\right )}{28512 \left (24 x^{3}-70 x^{2}+21 x +10\right )}\) \(139\)
elliptic \(\frac {\sqrt {-\left (-2+3 x \right ) \left (-5+2 x \right ) \left (1+4 x \right )}\, \left (-\frac {25 x \sqrt {-24 x^{3}+70 x^{2}-21 x -10}}{12}-\frac {1225 \sqrt {-24 x^{3}+70 x^{2}-21 x -10}}{54}+\frac {3023 \sqrt {11+44 x}\, \sqrt {22-33 x}\, \sqrt {110-44 x}\, F\left (\frac {\sqrt {11+44 x}}{11}, \sqrt {3}\right )}{4356 \sqrt {-24 x^{3}+70 x^{2}-21 x -10}}+\frac {487585 \sqrt {11+44 x}\, \sqrt {22-33 x}\, \sqrt {110-44 x}\, \left (-\frac {11 E\left (\frac {\sqrt {11+44 x}}{11}, \sqrt {3}\right )}{12}+\frac {2 F\left (\frac {\sqrt {11+44 x}}{11}, \sqrt {3}\right )}{3}\right )}{26136 \sqrt {-24 x^{3}+70 x^{2}-21 x -10}}\right )}{\sqrt {2-3 x}\, \sqrt {-5+2 x}\, \sqrt {1+4 x}}\) \(206\)
risch \(\frac {25 \left (98+9 x \right ) \left (-2+3 x \right ) \sqrt {-5+2 x}\, \sqrt {1+4 x}\, \sqrt {\left (2-3 x \right ) \left (-5+2 x \right ) \left (1+4 x \right )}}{108 \sqrt {-\left (-2+3 x \right ) \left (-5+2 x \right ) \left (1+4 x \right )}\, \sqrt {2-3 x}}+\frac {\left (-\frac {3023 \sqrt {22-33 x}\, \sqrt {-66 x +165}\, \sqrt {33+132 x}\, F\left (\frac {2 \sqrt {22-33 x}}{11}, \frac {i \sqrt {2}}{2}\right )}{13068 \sqrt {-24 x^{3}+70 x^{2}-21 x -10}}-\frac {487585 \sqrt {22-33 x}\, \sqrt {-66 x +165}\, \sqrt {33+132 x}\, \left (-\frac {11 E\left (\frac {2 \sqrt {22-33 x}}{11}, \frac {i \sqrt {2}}{2}\right )}{6}+\frac {5 F\left (\frac {2 \sqrt {22-33 x}}{11}, \frac {i \sqrt {2}}{2}\right )}{2}\right )}{78408 \sqrt {-24 x^{3}+70 x^{2}-21 x -10}}\right ) \sqrt {\left (2-3 x \right ) \left (-5+2 x \right ) \left (1+4 x \right )}}{\sqrt {2-3 x}\, \sqrt {-5+2 x}\, \sqrt {1+4 x}}\) \(246\)

[In]

int((7+5*x)^3/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/28512*(2-3*x)^(1/2)*(-5+2*x)^(1/2)*(1+4*x)^(1/2)*(4118336*(1+4*x)^(1/2)*(2-3*x)^(1/2)*22^(1/2)*(5-2*x)^(1/2
)*EllipticF(1/11*(11+44*x)^(1/2),3^(1/2))-5363435*(1+4*x)^(1/2)*(2-3*x)^(1/2)*22^(1/2)*(5-2*x)^(1/2)*EllipticE
(1/11*(11+44*x)^(1/2),3^(1/2))+1425600*x^4+11365200*x^3-44028600*x^2+14176800*x+6468000)/(24*x^3-70*x^2+21*x+1
0)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.33 \[ \int \frac {(7+5 x)^3}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=-\frac {25}{108} \, {\left (9 \, x + 98\right )} \sqrt {4 \, x + 1} \sqrt {2 \, x - 5} \sqrt {-3 \, x + 2} - \frac {17718443}{46656} \, \sqrt {-6} {\rm weierstrassPInverse}\left (\frac {847}{108}, \frac {6655}{2916}, x - \frac {35}{36}\right ) + \frac {487585}{1296} \, \sqrt {-6} {\rm weierstrassZeta}\left (\frac {847}{108}, \frac {6655}{2916}, {\rm weierstrassPInverse}\left (\frac {847}{108}, \frac {6655}{2916}, x - \frac {35}{36}\right )\right ) \]

[In]

integrate((7+5*x)^3/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x, algorithm="fricas")

[Out]

-25/108*(9*x + 98)*sqrt(4*x + 1)*sqrt(2*x - 5)*sqrt(-3*x + 2) - 17718443/46656*sqrt(-6)*weierstrassPInverse(84
7/108, 6655/2916, x - 35/36) + 487585/1296*sqrt(-6)*weierstrassZeta(847/108, 6655/2916, weierstrassPInverse(84
7/108, 6655/2916, x - 35/36))

Sympy [F]

\[ \int \frac {(7+5 x)^3}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\int \frac {\left (5 x + 7\right )^{3}}{\sqrt {2 - 3 x} \sqrt {2 x - 5} \sqrt {4 x + 1}}\, dx \]

[In]

integrate((7+5*x)**3/(2-3*x)**(1/2)/(-5+2*x)**(1/2)/(1+4*x)**(1/2),x)

[Out]

Integral((5*x + 7)**3/(sqrt(2 - 3*x)*sqrt(2*x - 5)*sqrt(4*x + 1)), x)

Maxima [F]

\[ \int \frac {(7+5 x)^3}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\int { \frac {{\left (5 \, x + 7\right )}^{3}}{\sqrt {4 \, x + 1} \sqrt {2 \, x - 5} \sqrt {-3 \, x + 2}} \,d x } \]

[In]

integrate((7+5*x)^3/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x, algorithm="maxima")

[Out]

integrate((5*x + 7)^3/(sqrt(4*x + 1)*sqrt(2*x - 5)*sqrt(-3*x + 2)), x)

Giac [F]

\[ \int \frac {(7+5 x)^3}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\int { \frac {{\left (5 \, x + 7\right )}^{3}}{\sqrt {4 \, x + 1} \sqrt {2 \, x - 5} \sqrt {-3 \, x + 2}} \,d x } \]

[In]

integrate((7+5*x)^3/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x, algorithm="giac")

[Out]

integrate((5*x + 7)^3/(sqrt(4*x + 1)*sqrt(2*x - 5)*sqrt(-3*x + 2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(7+5 x)^3}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\int \frac {{\left (5\,x+7\right )}^3}{\sqrt {2-3\,x}\,\sqrt {4\,x+1}\,\sqrt {2\,x-5}} \,d x \]

[In]

int((5*x + 7)^3/((2 - 3*x)^(1/2)*(4*x + 1)^(1/2)*(2*x - 5)^(1/2)),x)

[Out]

int((5*x + 7)^3/((2 - 3*x)^(1/2)*(4*x + 1)^(1/2)*(2*x - 5)^(1/2)), x)